Bipedal walking and running with spring-like biarticular muscles.

نویسندگان

  • Fumiya Iida
  • Jürgen Rummel
  • André Seyfarth
چکیده

Compliant elements in the leg musculoskeletal system appear to be important not only for running but also for walking in human locomotion as shown in the energetics and kinematics studies of spring-mass model. While the spring-mass model assumes a whole leg as a linear spring, it is still not clear how the compliant elements of muscle-tendon systems behave in a human-like segmented leg structure. This study presents a minimalistic model of compliant leg structure that exploits dynamics of biarticular tension springs. In the proposed bipedal model, each leg consists of three leg segments with passive knee and ankle joints that are constrained by four linear tension springs. We found that biarticular arrangements of the springs that correspond to rectus femoris, biceps femoris and gastrocnemius in human legs provide self-stabilizing characteristics for both walking and running gaits. Through the experiments in simulation and a real-world robotic platform, we show how behavioral characteristics of the proposed model agree with basic patterns of human locomotion including joint kinematics and ground reaction force, which could not be explained in the previous models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of biarticular muscles during the swing phase of walking

Template models can help to demonstrate and prove concepts on human locomotion such as the spring-mass model [1]. Since biarticular muscles may have specific tasks in walking [2], their action during the swing phase is investigated in this study. A new model is presented to describe the swing leg motion (Fig .1). The goal is to identify the role of elastic biarticular muscles on swing leg dynam...

متن کامل

From Walking to Running

The implementation of bipedal gaits in legged robots is still a challenge in state-of-the-art engineering. Human gaits could be realized by imitating human leg dynamics where a spring-like leg behavior is found as represented in the bipedal spring-mass model. In this study we explore the gap between walking and running by investigating periodic gait patterns. We found an almost continuous morph...

متن کامل

Robotic spring-mass walkers – potential and limitations

As spring-like leg behaviour in human running was observed in a number of studies [1] the spring loaded inverted pendulum (SLIP) model was initially proposed as a template model for running and hopping [2]. Based on the model behaviour a number of predictions were made concerning the ability to reproduce dynamics of walking gaits [3], stability measures and stabilisation strategies [4] as well ...

متن کامل

Exploring the Lombard Paradox in a Bipedal Musculoskeletal Robot

Towards advanced bipedal locomotion musculoskeletal system design has received much attention in recent years. It has been recognized that designing and developing new actuators with the properties of the human muscle-tendon complex is only one of the many tasks that have to be ful lled in order to come close to the powerful human musculoskeletal system enabling the human to such versatile dyna...

متن کامل

Robust and efficient walking with spring-like legs.

The development of bipedal walking robots is inspired by human walking. A way of implementing walking could be performed by mimicking human leg dynamics. A fundamental model, representing human leg dynamics during walking and running, is the bipedal spring-mass model which is the basis for this paper. The aim of this study is the identification of leg parameters leading to a compromise between ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomechanics

دوره 41 3  شماره 

صفحات  -

تاریخ انتشار 2008